Synthesis and structural studies of $\mathrm{Rh}^{\mathrm{I}}, \mathrm{Pd}^{\mathrm{I}}, \mathrm{Ni}^{\mathrm{II}}$ complexes and one-pot synthesis of binuclear $\mathrm{Ru}^{\mathrm{II}}$ complex $\left[\left(\eta^{6}-p\right.\right.$-cymene $\left.) \mathrm{Ru}\left(\mu_{2}-\mathrm{Cl}\right)_{3} \mathrm{Ru}\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\} \mathrm{Cl}\right]$

Chelladurai Ganesamoorthy ${ }^{\text {a }}$, Joel T. Mague ${ }^{\text {b }}$, Maravanji S. Balakrishna ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India
${ }^{\mathrm{b}}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA

Received 12 February 2007; received in revised form 4 April 2007; accepted 4 April 2007
Available online 21 April 2007

Abstract

The $\mathrm{Rh}^{\mathrm{I}}, \mathrm{Ru}^{\mathrm{II}}, \mathrm{Pd}^{\mathrm{I}}$ and $\mathrm{Ni}^{\mathrm{II}}$ complexes of the aminobis(phosphonite), $\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}(\mathbf{1})$ are reported. The reactions of $\mathbf{1}$ with $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ in $1: 1$ and $2: 1$ molar ratio afford the mono- and diolefin substituted chloro bridged chelate complexes, $\left[(\mathrm{COD}) \mathrm{Rh}_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\right)_{2}\right)_{2}\right\}\right]$ (2) and $\left[\mathrm{Rh}\left(\mu_{2}-\mathrm{Cl}\right)\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\}\right]_{2}$ (3), respectively. Similarly, the cationic mono- and bis-chelate complexes, $\left[\mathrm{Rh}(\mathrm{COD})\left\{\mathrm{PhN}\left(\mathrm{P}_{(}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\}\right] \mathrm{OTf}(\mathbf{4})$ and $\left[\mathrm{Rh}\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o_{2}\right)_{2}\right\}_{2}\right] \mathrm{OTf}(\mathbf{5})\right.$ are obtained by treating 1 with $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ in the presence of AgOTf in appropriate ratios. The dinuclear Rh^{I} carbonyl complex, $\left[\mathrm{RhCl}(\mathrm{CO})\left\{\mu-\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\}_{2}(6)\right.$ is prepared by treating $\mathbf{1}$ with 0.5 equiv. of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$. Reaction of $\mathbf{1}$ with cis$\left[\mathrm{NiBr}_{2}(\mathrm{DME})\right]$ ($\mathrm{DME}=1,2$-dimethoxyethane) affords $\left[\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\} \mathrm{NiBr}_{2}\right](7)$ whereas with $\left[\mathrm{Ru} \text { - }\left(\eta^{6}-p \text {-cymene }\right) \mathrm{Cl}_{2}\right]_{2}$ in refluxing THF medium produces an interesting and rare bimetallic $\mathrm{Ru}^{\text {II }}$ complex, $\left[\left(\eta^{6}-p\right.\right.$-cymene $) \mathrm{Ru}\left(\mu_{2}-\mathrm{C}\right)_{3} \mathrm{Ru}\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\right.\right.\right.$ $\left.\left.\left.\left.{ }_{0}\right)_{2}\right)_{2}\right\} \mathrm{Cl}\right](\mathbf{8})$. Redox condensation of the Pd^{0} and $\mathrm{Pd}^{\mathrm{II}}$ derivatives with 1 affords the dinuclear Pd^{1} complex, $[\operatorname{PdBr}\{\mu-\mathrm{PhN}(\mathrm{P}(\mathrm{O}-$ $\left.\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\}\right]_{2}(9)$. The formation and structure of complexes 2-9 are assigned through various spectroscopic and micro analysis data. The molecular structures of $\mathbf{5}$ and 7-9 are confirmed by single crystal X-ray diffraction studies.

© 2007 Elsevier B.V. All rights reserved.
Keywords: Aminobis(phosphonite); Transition metal chemistry; Crystal structures; Chelate and bridged bidentate complexes

1. Introduction

The transition metal chemistry of "short-bite" aminobis(phosphines) of the type $\mathrm{X}_{2} \mathrm{PN}(\mathrm{R}) \mathrm{PX}_{2}$ and their bis(chalcogenide) derivatives has attracted considerable attention in recent years because of the versatile coordination behavior of the former as it is similar to dppm [1] and the potential application of latter as single source precursors of various metal-, non-metal- and metalloid-telluride thin films and nanoparticles [2]. However, the ligands with $\mathrm{P}-$ $\mathrm{N}-\mathrm{P}$ framework are found to be thermally more stable com-

[^0]pared to dppm and sterically less rigid in comparison with $\mathrm{P}-\mathrm{O}-\mathrm{P}$ systems [3]. Further, the binding properties of these ligands can be readily altered by changing the substituents on both the phosphorus and the nitrogen centers. As a result, the ligands with $\mathrm{P}-\mathrm{N}-\mathrm{P}$ framework have been successfully employed in various catalytical reactions such as Pauson-Khand reactions [4], copolymerization of CO and ethylene [5], ethylene tri- [6] and tetramerization reactions [7] and allylic substitution reactions [8]. In view of this, recently we have synthesized and reported transition metal chemistry and catalytic applications of several aminophosphines and aminobis(phosphines). As a part of our interest in designing new ligands and studying their coordination behavior [9] and catalytic applications [10], we report herein the synthesis and structural characterization of $\mathrm{Rh}^{\mathrm{I}}, \mathrm{Ru}{ }^{\mathrm{II}}$,
Pd^{I} and $\mathrm{Ni}^{\mathrm{II}}$ metal complexes of aminobis(phosphonite), $\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}(\mathbf{1})$.

2. Results and discussion

2.1. $R h^{I}$ derivatives

The reactions of $\mathrm{PhN}\left(\mathrm{P}_{(}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}$ (1) with $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ in 1:1 and 2:1 molar ratio in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ lead to the successive replacement of the diene ligands and the formation of chloro bridged bimetallic chelate complexes, $\left[\mathrm{Rh}_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{2}(\mathrm{COD})\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\}\right]$ (2) and $\left[\mathrm{Rh}\left(\mu_{2}-\mathrm{Cl}\right)\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\}\right]_{2}$ (3), respectively. Similarly, the reactions of $\mathbf{1}$ with $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ in the presence of 2 equiv. of AgOTf in 2:1 and $4: 1$ molar ratio afford the cationic chelate complexes, $[\mathrm{Rh}(\mathrm{COD})$ $\left.\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\}\right] \mathrm{OTf}(\mathbf{4})$ and $\left[\mathrm{Rh}\left\{\mathrm{PhN}\left\{\mathrm{P}\left(\mathrm{OC}_{6}{ }^{-}\right.\right.\right.\right.$ $\left.\left.\left.\left.\mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right\}_{2}\right\}_{2}\right] \mathrm{OTf}(\mathbf{5})$, respectively, as shown in Scheme 1 [11].

The ${ }^{31} \mathrm{P}$ NMR spectra of complexes 2-5 show doublets centered at $92.0,89.7,87.1$ and 98.8 ppm with ${ }^{1} J_{\text {RhP }}$ couplings of $283,282,233$ and 197 Hz , respectively, which indicate the chemically and magnetically equivalent nature of the phosphorus centers. The ${ }^{1} \mathrm{H}$ NMR spectra of complexes 2-5 show single resonances around the region of $3.4-3.8 \mathrm{ppm}$ corresponding to the ortho-methoxy groups present in the phenyl rings. The resonance due to olefinic protons of COD in complexes $\mathbf{2}$ and $\mathbf{4}$ appear as broad singlets at 3.91 and 5.39 ppm . The methylenic protons present in complexes $\mathbf{2}$ and $\mathbf{4}$ exhibit two doublets at 2.29, 1.60 and $2.20,1.61 \mathrm{ppm}$, respectively. The structure of the complex $\mathbf{5}$ was confirmed by the single crystal X-ray diffraction study.

The reaction between 1 and $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature affords dinuclear complex $[\mathrm{RhCl}-$ (CO) $\left\{\mu-\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\right)_{2}\right)_{2}\right\}_{2}(6)$ as an yellow-orange color crystalline solid in good yield. In contrast, the same reaction when carried out in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ results in the formation of chloro-bridged dimeric complex 3 in quantitative yield. The phosphorus-31 NMR spectrum of complex 6 consists of an $\mathrm{XAA}^{\prime} \mathrm{X}^{\prime}$ multiplet centered at 117.1 ppm with $\left.\right|^{1} J_{\mathrm{RhP}}+{ }^{3} J_{\mathrm{RhP}} \mid=261 \mathrm{~Hz}$ and ${ }^{2} J_{\mathrm{PP}}=130$ Hz . Such type of spin multiplicity was observed in analogous complexes containing bridging bis(phosphines) ligands [$9 \mathrm{c}, 9 \mathrm{~d}, 9 \mathrm{~h}, 12$]. The IR spectrum of $\mathbf{6}$ shows two vCO absorptions at 2085 and $2021 \mathrm{~cm}^{-1}$ which is consistent with the cisrelated CO /phosphine structures proposed for similar complexes [13]. The microanalysis and ${ }^{1} \mathrm{H}$ NMR spectral data are consistent with the proposed structure of 6 .

2.2. $N i^{I I}, R u^{I I}$ and $P d^{I}$ Derivatives

The diamagnetic nickel(II) chelate complex, $[\{\mathrm{PhN}(\mathrm{P}(\mathrm{O}-$ $\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\right)_{2}\right)_{2}\right\} \mathrm{NiBr}_{2}$] (7) was prepared in high yield by reacting 1 with cis-[$\left.\mathrm{NiBr}_{2}(\mathrm{DME})\right]$ ($\mathrm{DME}=1,2$-dimethoxyethane) in THF at room temperature (Scheme 2). An equimolar reaction between $\mathbf{1}$ and $\left[\mathrm{Ru}-\left(\eta^{6}-p \text {-cymene }\right) \mathrm{Cl}_{2}\right]_{2}$ in THF at $60^{\circ} \mathrm{C}$ resulted in the formation of a rare tri-chloro-bridged bimetallic complex, $\left[\left(\eta^{6}-p\right.\right.$-cymene $) \mathrm{Ru}\left(\mu_{2}-\right.$ $\left.\mathrm{Cl})_{3} \mathrm{Ru}\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\right)_{2}\right)_{2}\right\} \mathrm{Cl}\right](8)$ in which one of the ruthenium(II) centers retains the cymene group irrespective of the stoichiometry of the ligand and the reaction conditions. This represents the first one-pot synthesis of a ruthenium(II) binuclear complex containing a bisphosphine ligand. The other known complexes of this type $\left[\left(\eta^{6}-p\right.\right.$-cymene $\left.) \mathrm{Ru}\left(\mu_{2}-\mathrm{Cl}\right)_{3} \mathrm{Ru}\left\{\mathrm{L}_{2}\right\} \mathrm{Cl}\right]\left(\mathrm{L}_{2}=\left(\mathrm{PPh}_{3}\right)_{2}\right.$,

Scheme 1. (i) $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$. (ii) $1 / 2\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ or $1 / 2\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}, \mathrm{CH}_{3} \mathrm{CN}, \Delta$ with (iii) $1 / 2[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{AgOTf}, \mathrm{CH} 2 \mathrm{Cl} 2 /$ acetone. (iv) $1 / 4[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, 1 / 2 \mathrm{AgOTf}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone with (v) $1 / 2\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 2. (i) NiBr_{2} (DME), THF. (ii) $\left[\mathrm{RuCl}_{2}(p-\mathrm{Cym})\right]_{2}, \mathrm{THF}, 60^{\circ} \mathrm{C}$ with (iii) $1 / 4 \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}, 1 / 2 \mathrm{PdBr}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
$\left.\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}, \mathrm{Cy}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PCy}_{2}\right)$ were prepared by mixing symmetrically substituted binuclear complexes [L_{2} -$\left.\mathrm{ClRu}(\mu-\mathrm{Cl})_{2}(\mu-\mathrm{X}) \mathrm{RuClL}_{2}\right]$ with $\left[\mathrm{Ru}-\left(\eta^{6}-p \text {-cymene }\right) \mathrm{Cl}_{2}\right]_{2}$ through con-proportionation reactions as shown in Scheme 3. The ${ }^{31} \mathrm{P}$ NMR spectra of complexes 7 and $\mathbf{8}$ show single resonances at 68.1 and 100.1 ppm , respectively and the ${ }^{1} \mathrm{H}$ NMR spectra show singlets at 3.59 and 3.66 ppm corresponding to the ortho-methoxy protons. The aromatic protons of p-cymene in complex $\mathbf{8}$ appear as two doublets at 5.34 and 5.18 ppm with J_{HH} coupling of 5.2 Hz . The methyl groups of isopropyl moiety appear as a doublet centered at 1.24 ppm with a J_{HH} coupling of 6.8 Hz , whereas the -CH proton appears as a septet at 2.84 ppm . The binuclear Pd^{1} complex $\left[\mathrm{Pd}^{\mathrm{I}} \mathrm{Br}\{\mu-\mathrm{PhN}(\mathrm{P}(\mathrm{O}-\right.$ $\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\}_{2}(9)$ was prepared by a redox condensation process using a 1:2:4 mixture of $\mathrm{Pd}_{2}^{0}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$, $\mathrm{Pd}^{\mathrm{II}} \mathrm{Br}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ and $\mathbf{1}$ in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The ${ }^{31} \mathrm{P}$ NMR spectrum of 9 shows a single peak at 111.3 ppm and the ${ }^{1} \mathrm{H}$ NMR data are consistent with the proposed structure. The structures of complexes $\mathbf{7 - 9}$ were confirmed by single crystal X-ray diffraction studies.

2.3. The crystal and molecular structures of 5 and 7-9

Perspective views of the molecular structures of compounds 5 and $\mathbf{7 - 9}$ with atom numbering schemes are shown

Scheme 3.
in Figs. 1-4, respectively. The selected bond lengths and bond angles of compounds $\mathbf{5}$ and $\mathbf{7 - 9}$ are given in Tables 1 and 2 , while crystal data and the details of the structure determinations are given in Table 3. The X-ray crystal structural determination of complex 5 shows that it exists as a cationic bis-chelate complex. The rhodium occupies the center of the distorted square planar geometry and the corners are occupied by four phosphorus centers of the diphosphazane ligands. Due to the formation of strained four-membered chelate ring the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angle of the free ligand shrinks from $116.07(12)^{\circ}$ to $99^{\circ}\left(\mathrm{P} 1-\mathrm{N} 1-\mathrm{P} 2=99.1(3)^{\circ}\right.$ and $\mathrm{P} 3-\mathrm{N} 2-\mathrm{P} 4=$ $\left.98.7(3)^{\circ}\right)$. The bite angles created by the chelating ligands

Fig. 1. Molecular structure of 5. All hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Molecular structure of 7. All hydrogen atoms and lattice solvent have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
$\mathrm{P} 1-\mathrm{Rh}-\mathrm{P} 2$ and $\mathrm{P} 3-\mathrm{Rh}-\mathrm{P} 4$ with Rh center are $69.98(6)^{\circ}$ and $69.52(7)^{\circ}$, respectively, which are $\sim 4.5^{\circ}$ larger than that observed in molybdenum tetra carbonyl derivative (P1-$\mathrm{Mo}-\mathrm{P} 2=65.02(4)^{\circ}$) [14]. The $\mathrm{P} 1-\mathrm{Rh}-\mathrm{P} 3$ and $\mathrm{P} 2-\mathrm{Rh}-\mathrm{P} 4$ bond angles $\left(179.22(6)^{\circ}\right.$ and $\left.173.01(7)^{\circ}\right)$ are slightly deviated from the linear geometry. The $\mathrm{Rh}-\mathrm{P}$ distances ranges from 2.241 (2) \AA (for Rh-P4) to $2.249(2) \AA$ (for Rh-P1).

Crystals of 7 suitable for X-ray diffraction analysis were grown by keeping the saturated THF solution of 7 at room temperature for several days. The diamagnetism of the compound had indicated the distorted square planar coordination geometry about the nickel center and is surrounded by two cis-bromides and phosphorus atoms. The four-mem-

Fig. 3. Molecular structure of $\mathbf{8}$. All hydrogen atoms and lattice solvent have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
bered $\mathrm{NP}_{2} \mathrm{Ni}$ chelate ring is nearly planar. The $\mathrm{Ni}-\mathrm{P}$ bonds are almost equidistant $(\mathrm{Ni}-\mathrm{P} 1=2.101(1) \AA$ and $\mathrm{Ni}-\mathrm{P} 2=$ $2.088(1) \AA)$ and are slightly shorter than those in the related cis- $\left[\mathrm{NiBr}_{2}\left\{\right.\right.$ allyl- $\left.\left.\mathrm{N}\left(\mathrm{PPh}_{2}\right)_{2}\right\}\right](2.112(1) \AA$ and $2.122(2) \AA)$, cis-$\left[\mathrm{NiCl}_{2}\left\{p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{N}\left(\mathrm{PPh}_{2}\right)_{2}\right\}\right](2.115(2) \AA$ and $2.123(2)$ A) [15], [1,3-\{cis- $\left.\mathrm{NiBr}_{2}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{~N}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right](2.116(4) \AA$ A) [5a], cis- $\left[\mathrm{NiBr}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Ph}) \mathrm{P}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2} \mathrm{SiMe}_{2}\right\}\right]$ (2.127(1) \AA and $2.115(1) \AA)$ [16] and cis-[$\left.\mathrm{NiBr}_{2}\left\{\mathrm{Ar}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{PAr}_{2}\right\}\right],(\mathrm{Ar}=$ $\left.{ }^{t} \mathrm{BuC}_{6} \mathrm{H}_{4}-o\right)(2.161(1) \AA)[5 \mathrm{~b}]$ complexes. Due to the formation of strained four-membered $\mathrm{NP}_{2} \mathrm{Ni}$ ring, the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angle of free ligand is reduced from $116.07(12)^{\circ}$ to 95.73 $(13)^{\circ}$. The $\mathrm{P} 1-\mathrm{Ni}-\mathrm{P} 2$ and $\mathrm{Br} 1-\mathrm{Ni}-\mathrm{Br} 2$ angles are $73.24(4)^{\circ}$ and $100.70(2)^{\circ}$, respectively.

Complex $\mathbf{8}$ is a bimetallic $\mathrm{Ru}^{\mathrm{II}}$ complex with Ru2 center having η^{6}-coordinated cymene ligand and Ru1 center is surrounded by chlorides and a chelating diphosphazane ligand.

Fig. 4. Molecular structure of 9. All hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

Table 1
Selected bond distances and bond angles for complexes 5 and 7

Complex 5				Complex 7			
Bond distances (A)		Bond angles (${ }^{\circ}$)		Bond distances (A)		Bond angles (${ }^{\circ}$)	
P1-N1	$1.692(6)$	P1-N1-P2	99.1(3)	P1-N	1.689(3)	P1-N-P2	95.73(13)
P2-N1	$1.696(5)$	P3-N2-P4	98.7(3)	P2-N	1.681(3)	P1-Ni-P2	73.24(4)
P3-N2	1.698(7)	$\mathrm{P} 1-\mathrm{Rh}-\mathrm{P} 2$	69.98(6)	P1-Ni	2.101(1)	$\mathrm{Br} 1-\mathrm{Ni}-\mathrm{Br} 2$	100.70(2)
$\mathrm{P} 4-\mathrm{N} 2$	$1.680(7)$	P3-Rh-P4	69.52(7)	P2-Ni	2.088(1)	$\mathrm{Br} 1-\mathrm{Ni}-\mathrm{P} 1$	166.68(4)
Rh-P1	2.249(2)	$\mathrm{P} 1-\mathrm{Rh}-\mathrm{P} 4$	109.81(7)	Brl-Ni	2.317(1)	Br1-Ni-P2	93.70(3)
Rh-P2	2.246(2)	P2-Rh-P3	110.74(7)	Br2-Ni	2.327(1)	Br2-Ni-P1	92.44(3)
Rh-P3	2.253(2)	$\mathrm{P} 1-\mathrm{Rh}-\mathrm{P} 3$	179.22(6)	P1-O1	1.591(3)	$\mathrm{Br} 2-\mathrm{Ni}-\mathrm{P} 2$	165.50(4)
Rh-P4	2.241(2)	P2-Rh-P4	173.01(7)	P1-O3	1.577(3)	$\mathrm{Ni}-\mathrm{P} 1-\mathrm{N}$	95.01(9)
P1-O1	$1.576(5)$	Rh-P1-N1	95.47(19)	P2-O5	1.577(3)	Ni-P2-N	95.70(9)
P1-O3	$1.602(5)$	Rh-P2-N1	95.5(2)	P2-O7	1.588(3)		
P2-O5	$1.585(5)$	Rh-P3-N2	95.4(2)				
P2-O7	$1.599(5)$	Rh-P4-N2	96.4(2)				

Table 2
Selected bond distances and bond angles for complexes $\mathbf{8}$ and 9

Complex 8				Complex 9			
Bond distances (A)		Bond angles $\left(^{\circ}\right.$)		Bond distances (A)		Bond angles (${ }^{\circ}$)	
P1-N1	1.689(3)	P1-N1-P2	94.89(16)	P1-N1	1.685(3)	P1-N1-P2	111.81(14)
P2-N1	$1.699(3)$	P1-Ru1-P2	69.97(4)	P2-N1	1.691(3)	P3-N2-P4	114.02(14)
Ru1-Ru2	3.260(1)	Cl1-Ru1-Cl2	91.61(3)	P3-N2	1.677(3)	Br1-Pd1-P1	96.42(3)
Ru1-Cl1	2.375 (1)	Cl1-Ru1-Cl3	91.48(3)	P4-N2	1.682(3)	Br1-Pd1-P4	92.96(3)
Ru1-Cl2	2.532(1)	Cl1-Ru1-Cl4	168.53(3)	P1-Pd1	2.240(2)	Br2-Pd2-P2	89.11(3)
Ru1-Cl3	2.500 (1)	Cl1-Ru1-P1	93.13(4)	P2-Pd2	2.256(3)	Br2-Pd2-P3	95.21(3)
Ru1-Cl4	2.398(1)	Cl1-Ru1-P2	89.39(4)	P4-Pd1	2.257(2)	$\mathrm{Pd} 1-\mathrm{Pd} 2-\mathrm{Br} 2$	173.78(1)
Ru1-P1	2.174(1)	C12-Ru1-Cl3	79.72(3)	P3-Pd2	2.249(3)	$\mathrm{Pd} 2-\mathrm{Pd} 1-\mathrm{Br} 1$	170.21(1)
Ru1-P2	2.178(1)	C12-Ru1-Cl4	78.51(3)	Pd1-Brl	2.480(1)	Pd1-Pd2-P2	88.36(2)
Ru2-Cl2	2.444(1)	Ru1-Cl2-Ru2	81.84(3)	$\mathrm{Pd} 2-\mathrm{Br} 2$	2.481(1)	Pd1-Pd2-P3	87.69(2)
Ru2-Cl3	2.440(1)	Ru1-Cl3-Ru2	82.56(3)	Pd1-Pd2	2.618(1)	Pd2-Pd1-P1	83.65(3)
Ru2-Cl4	2.412(1)	Ru1-Cl4-Ru2	85.36(2)			Pd2-Pd1-P4	88.62(2)
Ru2-C36	2.193(4)	C13-Ru1-Cl4	81.11(3)			$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{P} 4$	167.06(3)
Ru2-C37	2.182(4)	Cl2-Ru1-P1	106.00(3)			P2-Pd2-P3	174.39(3)
Ru2-C38	2.142(4)	C12-Ru1-P2	175.90(3)				
Ru2-C39	2.170(4)	Cl3-Ru1-P1	172.54(3)				
Ru2-C40	$2.136(4)$	Cl3-Ru1-P2	104.23(3)				
Ru2-C41	2.166(4)	Cl4-Ru1-P1	95.19(3)				
		C14-Ru1-P2	100.88(3)				

Table 3
Crystallographic information for compounds 5, 7-9

	5	7	8	9
Formula	$\mathrm{C}_{69} \mathrm{H}_{65} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{19} \mathrm{P}_{4} \mathrm{RhS}$	$\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{Br}_{2} \mathrm{NNiO}_{8} \mathrm{P}_{2}$	$\mathrm{C}_{48.75} \mathrm{H}_{51} \mathrm{Cl}_{4} \mathrm{~N}_{1.25} \mathrm{O}_{8.75} \mathrm{P}_{2} \mathrm{Ru}_{2}$	$\mathrm{C}_{68.5} \mathrm{H}_{68} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{16.5} \mathrm{P}_{4} \mathrm{Pd}_{2}$
Fw	1542.09	888.06	1200.29	1679.77
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Triclinic
Space group	Pna21 (No. 33)	P21/c (No. 14)	$C 2 / c$ (No. 15)	$P \overline{1}$ (No. 2)
$a(\AA)$	13.929(2)	11.835(2)	34.040(2)	13.5040(10)
b (\AA)	39.565(7)	11.467(2)	19.1510(10)	14.0960(10)
$c(\AA)$	12.385(2)	27.074(4)	18.5610(10)	19.865(2)
α°	90	90	90	84.118(2)
β°	90	101.3060(10)	96.4370(10)	82.292(2)
γ°	90	90	90	63.3880(10)
$V\left(\AA^{3}\right)$	6825.4(19)	3603.0(10)	12023.6(11)	3346.4(5)
Z	4	4	8	2
$\rho_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.501	1.637	1.326	1.667
$\mu(\mathrm{MoK} \alpha)\left(\mathrm{mm}^{-1}\right)$	0.458	2.898	0.779	1.898
$F(000)$	3172	1792	4866	1694
Crystal size (mm^{3})	$0.05 \times 0.16 \times 0.20$	$0.18 \times 0.20 \times 0.20$	$0.15 \times 0.16 \times 0.23$	$0.11 \times 0.12 \times 0.16$
T (K)	293	100	100	100
2θ Range ${ }^{\circ}$	1.5-28.3	2.1-26.4	2.1-28.3	2.1-28.3
Total no. reflections	58,948	17,216	105,063	59,811
No. of independent reflections ($R_{\text {int }}$)	16,198 (0.058)	17,236 (0.000)	14,962 (0.060)	16,477 (0.052)
GOF (F^{2})	1.21	1.01	1.11	1.01
$R_{1}^{\text {a }}$	0.0803	0.0582	0.0508	0.0406
$w R_{2}^{\mathrm{b}}$	0.1655	0.1621	0.1437	0.0934

${ }^{\text {a }} R=\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / / \sum\right| F_{\mathrm{o}} \mid$.
${ }^{\mathrm{b}} \begin{aligned} & R \\ & R_{w}=\left\{\left[\sum w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right) / \sum w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2} w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(x P)^{2}\right] \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 .\end{aligned}$

The tetrahedral $\left\{\left(\eta^{6}\right.\right.$-cymene $\left.) \mathrm{Ru} 2\right\}$ fragment is connected through three chloro bridges to the octahedral $\{\operatorname{RulCl}(\mathrm{PNP})\}$ moiety. The two phosphorus centers (P 1 and P 2) are in cis positions and trans to chlorides (Cl 3 and Cl 2) with remaining chlorides (Cl 1 and Cl 4) are coordinated trans to each other. As expected, the $\mathrm{Ru}-\mathrm{Cl}$ bonds of the bridging chlorides are longer ($\mathrm{Ru} 1-\mathrm{Cl} 4=2.398(1) \AA-$ $\mathrm{Ru} 1-\mathrm{Cl} 2=2.532(1) \AA$) than the terminal $\mathrm{Ru}-\mathrm{Cl}$ bond
$(\mathrm{Ru} 1-\mathrm{Cl} 1=2.375(1) \AA)$. The $\mathrm{Ru} \cdots \mathrm{Ru}$ distance ($\mathrm{Ru} 1-$ $\mathrm{Ru} 2=3.260(1) \AA$) is well outside the range ($2.28-2.95 \AA$) usually observed for a $\mathrm{Ru}-\mathrm{Ru}$ bond and is some what shorter than that observed in analogous complexes [$(1,3,5-$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Et}_{3}\right) \mathrm{Ru}\left(\mu_{2}-\mathrm{Cl}\right)_{3} \mathrm{Ru}(\mathrm{dppb}) \mathrm{Cl}\right](3.326(1) \AA),\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)-\right.$ $\left.\mathrm{Ru}\left(\mu_{2}-\mathrm{Cl}\right)_{3} \mathrm{Ru}(\mathrm{dppb}) \mathrm{Cl}\right](3.314(1) \AA)(\mathrm{dppb}=1,4$-bis(diphenylphosphanyl)butane $)$ and $\quad\left[\left(1,3,5-\mathrm{C}_{6} \mathrm{H}_{3} i \mathrm{Pr}_{3}\right) \mathrm{Ru}\left(\mu_{2^{-}}\right.\right.$ $\left.\mathrm{Cl})_{3} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\right](3.360(2) \AA)$ [17]. As observed for the
above complexes, the plane defined by η^{6}-cymene ligand is almost parallel to that defined by the bridging chloro ligands. The non-bonded $\mathrm{P} \cdots \mathrm{P}$ separations in complex 7 and $\mathbf{8}$ are $2.499(1) \AA$ and $2.495(1) \AA$, respectively, which are shorter than that observed in complex 5 ($\mathrm{P} 1 \cdots \mathrm{P} 2=2.578 \AA$ and $\mathrm{P} 3 \cdots \mathrm{P} 4=2.562 \AA$).

In complex 9 , both the Pd^{I} centers are having distorted square planar geometry and are surrounded by one Pd , two P and one Br ligands. The $\mathrm{Pd}-\mathrm{Pd}$ bond length in 9 $(2.6182(5) \AA)$ is almost identical to the same in the analogous complex $\left[\operatorname{Pd}\left\{\mu-\mathrm{PhN}\left(\mathrm{P}(\mathrm{OPh})_{2}\right)_{2}\right\} \mathrm{Cl}\right]_{2}(2.619(1) \AA)[18]$ and $\sim 0.08 \AA$ shorter than that in $[\operatorname{Pd}(\mu-d p p m) B r]_{2}$ $(2.699(5) \AA)$ [19]. The Pd-P bond distances in 9 ranges from 2.239(1) \AA to 2.257(1) \AA, which are shorter than those observed for $[\operatorname{Pd}(\mu-d p p m) B r]_{2}$ complex. The $\mathrm{P}-\mathrm{N}$ bond lengths varies from 1.677 (3) \AA to $1.691(3) \AA$, which are statistically equivalent to the average distances found in $[\mathrm{Pd}(\mu-\mathrm{dppa}) \mathrm{Cl}]_{2}[20]$ and $\left[\mathrm{Pd}\left\{\mu-\mathrm{PhN}\left(\mathrm{P}(\mathrm{OPh})_{2}\right)_{2}\right\} \mathrm{Cl}\right]_{2}$ [18]. The four cis angles ($\mathrm{Br}-\mathrm{Pd}-\mathrm{P}$) centered at the Pd 1 and Pd 2 centers with bromine atoms are $96.42(3)^{\circ}, 92.96(3)^{\circ}$, $89.11(3)^{\circ}$ and $95.21(3)^{\circ}$, respectively. There is a pronounced twist about the $\mathrm{Pd}-\mathrm{Pd}$ bond with dihedral angles of $\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{Pd} 2-\mathrm{P} 2$ and $\mathrm{P} 4-\mathrm{Pd} 1-\mathrm{Pd} 2-\mathrm{P} 3$ are $-41.31(3)^{\circ}$ and $-34.90(3)^{\circ}$, respectively, which are typical for the $\mathrm{M}_{2}(\mu-\mathrm{LL})_{2}{ }^{2+}$ skeleton. For example, the dihedral angle between the square planes in $[\operatorname{Pd}(\mu-\mathrm{dppm}) \operatorname{Br}]_{2}$ is 39°. Because of the bridging nature of the ligand, the complex 9 shows much longer $\mathrm{P} \cdots \mathrm{P}$ separation when compare to the chelate complexes.

3. Conclusion

The 'short bite' bidentate ligand $\mathbf{1}$ readily reacts with various low valent transition metals to give either mononuclear chelates or binuclear complexes depending upon the reaction conditions and stoichiometry. With Rh^{I} derivatives, various neutral and cationic complexes were prepared. Reaction of $\mathbf{1}$ with $\mathrm{Ni}^{\mathrm{II}}$ derivative yielded four-membered chelate complex and with $\mathrm{Ru}^{\mathrm{II}}$ derivative half sandwich homo bimetallic complex $\mathbf{8}$ was formed. This is the first report on one-pot synthesis of a binuclear complex of the type 8 in excellent yield; the other two known complexes were prepared involving two step conproportionation reactions. The redox reaction between Pd^{0} and $\mathrm{Pd}^{\mathrm{II}}$ in the presence of ligand $\mathbf{1}$ resulted in a Pd^{I} dimer. The work on catalytic aspects of these complexes is in progress.

4. Experimental

All experimental manipulations were performed under rigorously anaerobic conditions using Schlenk techniques. All the solvents were purified by conventional procedures and distilled prior to use [21]. The aminobis(phosphonite), $\mathrm{PhN}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{o}\right)_{2}\right\}_{2}$ (1) was prepared as previously reported [14]. The metal precursors $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ [22], $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2} \quad[23], \quad\left[\mathrm{Ru}\left(\eta^{6} \text {-cymene }\right) \mathrm{Cl}_{2}\right]_{2} \quad[24], \quad \mathrm{Pd}_{2^{-}}$
$(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}[25]$ and $\mathrm{NiBr}_{2}(\mathrm{DME})$ [26] were prepared according to the published procedures. AgOTf was purchased from Aldrich chemicals and used as such without further purification. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ in ppm) spectra were recorded using Varian VXR 300 or VXR 400 spectrometer operating at the appropriate frequencies using TMS and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as internal and external references, respectively. The spectra were recorded in CDCl_{3} solutions with CDCl_{3} as an internal lock; positive shifts lie downfield of the standard in all of the cases. Infrared spectra were recorded on a Nicolet Impact 400 FTIR instrument as KBr disks. The microanalyses were performed using Carlo Erba Model 1112 elemental analyzer. The melting points were observed in capillary tubes and are uncorrected.

4.1. Synthesis of $\left[(C O D) R h(\mu-C l)_{2} R h\left\{P h N\left(P\left(O C_{6} H_{4}-\right.\right.\right.\right.$ $\left.\left.\left.(\mathrm{OMe}-\mathrm{O})_{2}\right)_{2}\right\}\right]$ (2)

A solution of $\mathbf{1}(0.026 \mathrm{~g}, 0.040 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a solution of $[\mathrm{RhCl}(\mathrm{COD})]_{2}$ ($0.020 \mathrm{~g}, 0.040 \mathrm{mmol}$) also in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ with constant stirring. The reaction mixture was allowed to stir at room temperature for 4 h . The resulting solution was concentrated to 2 mL , layered with 1 mL of petroleum ether, and stored at $-30^{\circ} \mathrm{C}$ for 1 day to give analytically pure product of 2. Yield: $79 \%(0.033 \mathrm{~g})$, m.p.: $144-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80-6.76(\mathrm{~m}, 21 \mathrm{H}, \mathrm{ArH})$, 3.91 (br s, $4 \mathrm{H}, \mathrm{CH}), 3.52\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.29$ and $1.60 \mathrm{ppm}\left(\mathrm{d}, 8 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta \quad 92.0 \mathrm{ppm} \quad\left(\mathrm{d}, \quad{ }^{1} J_{\mathrm{Rh}, \mathrm{P}}=283 \mathrm{~Hz}\right)$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Rh}_{2} \mathrm{Cl}_{2}$ (1030.47): C, 48.95; H, 4.40; N, 1.36. Found: C, 48.90 ; H, $4.42 ; \mathrm{N}, 1.34 \%$.

4.2. Synthesis of $\left[R h(\mu-C l)\left\{P h N\left(P\left(O C_{6} H_{4} O M e-o\right)_{2}\right)_{2}\right\}\right]_{2}$ (3)

(a) A solution of $[\mathrm{RhCl}(\mathrm{COD})]_{2}(0.035 \mathrm{~g}, 0.071 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a solution of $\mathbf{1}$ $(0.092 \mathrm{~g}, 0.142 \mathrm{mmol})$ also in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ with constant stirring. The reaction mixture was allowed to stir at room temperature for 4 h . The resulting solution was concentrated to 4 mL , layered with 2 mL of petroleum ether, and stored at $-30^{\circ} \mathrm{C}$ for 1 day to give orange precipitate of $\mathbf{3}$. Yield: 89% $(0.099 \mathrm{~g})$.
(b) A mixture of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(0.027 \mathrm{~g}, 0.070 \mathrm{mmol})$ and $1(0.091 \mathrm{~g}, 0.141 \mathrm{mmol})$ in acetonitrile $(15 \mathrm{~mL})$ was stirred under reflux condition for 4 h . The solvent was removed under reduced pressure, the residue was redissolved in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and diluted with 1 mL of petroleum ether. Keeping this solution at $-30^{\circ} \mathrm{C}$ for 1 day afforded orange colored crystalline solid 3. Yield: $80 \%(0.088 \mathrm{~g})$, m.p.: $168-170{ }^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72-6.64(\mathrm{~m}, 42 \mathrm{H}$, ArH), $3.46 \mathrm{ppm}\left(\mathrm{s}, \quad 24 \mathrm{H}, \quad \mathrm{OCH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (121 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 89.7 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J_{\mathrm{Rh}, \mathrm{P}}=282 \mathrm{~Hz}\right)$.

Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{Rh}_{2} \mathrm{Cl}_{2}$ (1567.87): C , 52.09; H, 4.24; N, 1.79. Found: C, 52.02; H, 4.22; N, 1.84\%.

4.3. Synthesis of $\left[R h(C O D)\left\{P h N\left(P\left(O C_{6} H_{4} O M e-o\right)_{2}\right)_{2}\right\}\right]-$ OTf (4)

AgOTf $(0.021 \mathrm{~g}, 0.081 \mathrm{mmol})$ was added to the stirred solution of $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(0.020 \mathrm{~g}, 0.041 \mathrm{mmol})$ in 5 mL of acetone. After 30 min , a solution of $\mathbf{1}(0.052 \mathrm{~g}$, 0.081 mmol) in 6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise and stirred for 4 h . The suspension obtained was filtered to remove AgCl , and the yellowish-orange filtrate was concentrated to 5 mL . Cooling this solution to $-30^{\circ} \mathrm{C}$, gave $\mathbf{1}$ as an analytically pure yellow crystalline solid. Yield: $66 \% \quad(0.054 \mathrm{~g}), \quad$ m.p.: $\quad 155-157{ }^{\circ} \mathrm{C} \quad$ (dec). ${ }^{1} \mathrm{H} \quad$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67-6.90(\mathrm{~m}, 21 \mathrm{H}, \mathrm{ArH}$), 5.39 (br $\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}), 3.81(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OMe}), 2.20$ and $1.61 \mathrm{ppm}(\mathrm{d}$, $8 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 87.1 \mathrm{ppm}$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{Rh}, \mathrm{P}}=233 \mathrm{~Hz}\right)$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{NO}_{11} \mathrm{P}_{2} \mathrm{SRh}$ (1005.73): C, 51.35; H, 4.51; N, 1.39; S, 3.19. Found: C, 51.41 ; H, 4.49; N, 1.33; S, 3.14\%.

4.4. Synthesis of $\left[\operatorname{Rh}\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe-o}\right)_{2}\right)_{2}\right\}_{2}\right]$ OTf

 (5)This was synthesized by a procedure similar to that of 4 using AgOTf $(0.026 \mathrm{~g}, \quad 0.101 \mathrm{mmol}), \quad[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ $(0.025 \mathrm{~g}, 0.051 \mathrm{mmol})$ and $1(0.131 \mathrm{~g}, 0.203 \mathrm{mmol})$. Crystals suitable for X-ray diffraction analysis were grown from 2:1 mixture of tetrahydrofuran/pet ether at $-30^{\circ} \mathrm{C}$. Yield: 91% (0.142 g), m.p.: ${ }^{190-192}{ }^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.26-6.61(\mathrm{~m}, 42 \mathrm{H}, \mathrm{ArH}), 3.45 \mathrm{ppm}(\mathrm{s}, 24 \mathrm{H}$, OCH_{3}). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 98.8 \mathrm{ppm}$ (d, $\left.{ }^{1} J_{\mathrm{Rh}, \mathrm{P}}=197 \mathrm{~Hz}\right)$. Anal. Calcd for $\mathrm{C}_{69} \mathrm{H}_{66} \mathrm{~F}_{3} \mathrm{~N}_{2}-$ $\mathrm{O}_{19} \mathrm{P}_{4} \mathrm{SRh}(1543.13): \mathrm{C}, 53.70 ; \mathrm{H}, 4.31 ; \mathrm{N}, 1.82 ; \mathrm{S}, 2.08$. Found: C, 53.63 ; H, 4.34; N, 1.86; S, 2.05%.

4.5. Synthesis of $\left[\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}\left\{\mathrm{PhN}\left(\mathrm{P}_{\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\right.}\right.\right.\right.$ o) $\left.\left.)_{2}\right\}\right]_{2}$ (6)

This was synthesized by a procedure similar to that of $\mathbf{2}$ using $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(0.020 \mathrm{~g}, 0.051 \mathrm{mmol})$ and $1(0.066 \mathrm{~g}$, $0.103 \mathrm{mmol})$. Yield: $76 \%(0.063 \mathrm{~g})$; m.p.: $118-120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75-6.73(\mathrm{~m}, 42 \mathrm{H}, \mathrm{ArH})$, $3.78 \mathrm{ppm}\left(\mathrm{s}, 24 \mathrm{H}, \quad \mathrm{OCH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \quad \delta \quad 117.1 \mathrm{ppm} \quad\left(\mathrm{m}, \quad\left|{ }^{1} J_{\mathrm{Rh}, \mathrm{P}}+{ }^{3} J_{\mathrm{Rh}, \mathrm{P}}\right|=262 \mathrm{~Hz}\right.$, ${ }^{2} J_{\mathrm{P}, \mathrm{P}}=130 \mathrm{~Hz}$); FT-IR (KBr disc) $\mathrm{cm}^{-1}: v(\mathrm{CO}) 2085$, 2021. Anal. Calcd for $\mathrm{C}_{70} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{18} \mathrm{P}_{4} \mathrm{Rh}_{2} \mathrm{Cl}_{2}$ (1623.89): C, 51.77; H, 4.10; N, 1.72. Found: C, 51.70; H, 4.14; N, 1.78\%.

4.6. Synthesis of $\left[\mathrm{NiBr}_{2}\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe-o}\right)_{2}\right)_{2}\right\}\right]$ (7)

A solution of $1(0.085 \mathrm{~g}, 0.132 \mathrm{mmol})$ in THF (6 mL) was added dropwise to a solution of $\mathrm{NiBr}_{2}(\mathrm{DME})$ ($0.041 \mathrm{~g}, 0.132 \mathrm{mmol}$) also in THF (5 mL) with constant
stirring. After 1 h , the resulting red solution was kept at room temperature for 2 days to give analytically pure red crystals of 7. Yield: 92% (0.104 g), m.p.: $198-200^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.66-6.64(\mathrm{~m}$, $21 \mathrm{H}, \mathrm{ArH}), 3.59 \mathrm{ppm}\left(\mathrm{s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 68.1 \mathrm{ppm}$ (s). Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{NiBr}_{2}(864.08): \mathrm{C}, 47.26 ; \mathrm{H}, 3.85 ; \mathrm{N}, 1.62$. Found: C, 47.20 ; H, 3.88 ; N, 1.63%.
4.7. Synthesis of $\left[\left(\eta^{6}\right.\right.$-cymene $) R u(\mu-C l)_{3^{-}}$ $\left.\mathrm{Ru}(\mathrm{Cl})\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe-o}\right)_{2}\right)_{2}\right\}\right]$ (8)

A mixture of $\left[\mathrm{Ru}\left(\eta^{6} \text {-cymene }\right) \mathrm{Cl}_{2}\right]_{2}(0.041 \mathrm{~g}, 0.067 \mathrm{mmol})$ and $1(0.043 \mathrm{~g}, 0.067 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was stirred under reflux condition for 5 h . It was cooled to room temperature and concentrated to 5 mL under vacuum. Keeping this solution at $-30^{\circ} \mathrm{C}$ for several days afforded red crystals of 8. Yield: $80 \%(0.060 \mathrm{~g})$, m.p.: $210-212{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.26-6.70(\mathrm{~m}, 21 \mathrm{H}, \mathrm{ArH})$, $5.34\left(\mathrm{~d}, J_{\mathrm{H}, \mathrm{H}}=5.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, cymene Ph$), 5.18(\mathrm{~d}, 2 \mathrm{H}$, cymene Ph), $3.66\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.84(\mathrm{sep}, 1 \mathrm{H}, \mathrm{CH})$, $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) . \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(162 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta$ 100.1 ppm (s). Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{47} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Ru}_{2} \mathrm{Cl}_{4}$ (1123.74): C, 47.03; H, 4.22; N, 1.25. Found: C, 47.01; H, 4.26; N, 1.21\%.
4.8. Synthesis of $\left[\operatorname{PdBr}\left\{\mu-\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{o}\right)_{2}\right)_{2}\right\}\right]_{2}$ (9)

A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.031 \mathrm{~g}, 0.030 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Br}_{2}(0.021 \mathrm{~g}, \quad 0.060 \mathrm{mmol})$ and $1(0.077 \mathrm{~g}$, $0.120 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred under reflux condition for 1 h . The resulting red-orange solution was cooled and filtered. The filtrate was concentrated to 5 mL and methanol $(10 \mathrm{~mL})$ was added to precipitate the product. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ mixture followed by vacuum drying afforded analytically pure product of 9. Yield: $45 \%(0.045 \mathrm{~g})$, m.p.: $160-162{ }^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-6.62(\mathrm{~m}, 42 \mathrm{H}$, ArH), $\quad 3.59 \mathrm{ppm} \quad\left(\mathrm{s}, \quad 24 \mathrm{H}, \quad \mathrm{OCH}_{3}\right) . \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 111.3 \mathrm{ppm}$ (s). Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{Br}_{2}$ (1663.80): C, 49.09; H, 4.00; N , 1.68. Found: C, 49.11; H, 4.05; N, 1.66\%.

4.9. X-ray crystallography

Crystals of 5 and $7-9$ were mounted in a Cryoloop ${ }^{\text {TM }}$ with a drop of Paratone oil and placed in the cold nitrogen stream of the Kryoflex ${ }^{\text {TM }}$ attachment of the Bruker APEX CCD diffractometer. A full sphere of data was collected using 606 scans in $\omega\left(0.3^{\circ}\right.$ per scan $)$ at $\phi=0^{\circ}, 120^{\circ}$ and 240° or 400 scans in $\omega\left(0.5^{\circ}\right.$ per scan $)$ at $\phi=0^{\circ}, 90^{\circ}$ and 180° plus 800 scans in $\phi\left(0.45^{\circ}\right.$ per scan) at $\omega=0$ and 210° using the smart software package [27]. The raw data were reduced to F^{2} values using the SAINT+ software [28] and global refinements of unit cell parameters using

6800-9550 reflections chosen from the full data sets were performed. Multiple measurements of equivalent reflections provided the basis for empirical absorption corrections as well as corrections for any crystal deterioration during the data collection (SADABS [29]). All the structures were solved by direct methods and refined by full-matrix least-squares procedures using the shelxtl program package [30]. Hydrogen atoms were placed in calculated positions and included as riding contributions with isotropic displacement parameters tied to those of the attached non-hydrogen atoms. Pertinent crystallographic data and other experimental details are summarized in Table 3.

Acknowledgements

We are grateful to the Department of Science and Technology (DST), New Delhi, for funding through Grant SR/S1/IC-05/2003. C.G. thanks CSIR for Junior Research Fellowship (JRF). We also thank SAIF, Mumbai, Department of Chemistry Instrumentation Facilities, Bombay, for spectral and analytical data and the Louisiana Board of Regents through grant LEQSF(2002-03)-ENH-TR-67 for purchase of the CCD diffractometer and the Tulane University for support of the X-ray laboratory.

Appendix A. Supplementary material

CCDC 631331, 631332, 631333 and 631334 contain the supplementary crystallographic data for $5,7,8$ and 9 . These data can be obtained free of charge via http://www.ccdc. cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at doi: 10.1016/j.jorganchem.2007.04.019.

References

[1] (a) S.K. Mandal, T.S. Venkatakrishnan, A. Sarkar, S.S. Krishnamurthy, J. Organomet. Chem. 691 (2006) 2969;
(b) M.S. Balakrishna, K. Ramaswamy, R.M. Abhyankar, J. Organomet. Chem. 560 (1998) 131;
(c) T.S. Venkatakrishnan, S.S. Krishnamurthy, M. Nethaji, J. Organomet. Chem. 690 (2005) 4001;
(d) A.S. Veige, T.G. Gray, D.G. Nocera, Inorg. Chem. 44 (2005) 17; (e) T.G. Gray, A.S. Veige, D.G. Nocera, J. Am. Chem. Soc. 126 (2004) 9760;
(f) M.S. Balakrishna, R. Panda, D.C. Smith, A. Klaman, S.P. Nolan, J. Organomet. Chem. 599 (2000) 159;
(g) A.F. Heyduk, D.G. Nocera, J. Am. Chem. Soc. 122 (2000) 9415; (h) T.Q. Ly, J.D. Woollins, Coord. Chem. Rev. 176 (1998) 451;
(i) P. Bhattacharyya, J.D. Woollins, Polyhedron 14 (1995) 3367;
(j) M.S. Balakrishna, S.V. Reddy, S.S. Krishnamurthy, J.F. Nixon,
J.C.T.R.B. St. Laurent, Coord. Chem. Rev. 129 (1994) 1.
[2] (a) S.S. Garje, D.J. Eisler, J.S. Ritch, M. Afzaal, P. O’Brien, T. Chivers, J. Am. Chem. Soc. 128 (2006) 3120;
(b) M. Afzaal, D.J. Crouch, P. O'Brien, J. Raftery, P.J. Skabara, A.J.P. White, D.J. Williams, J. Mater. Chem. (2004) 233;
(c) M. Afzaal, D. Crouch, M.A. Malik, M. Motevalli, P. O'Brien, J.H. Park, J.D. Woollins, Eur. J. Inorg. Chem. 1 (2004) 171;
(d) J. Waters, D. Crouch, J. Raftery, P. O'Brien, Chem. Mater. 16 (2004) 3289;
(e) D.J. Crouch, P. O’Brien, M.A. Malik, P.J. Skabara, S.P. Wright, Chem. Commun. (2003) 1454;
(f) J.-H. Park, M. Afzaal, M. Helliwell, M.A. Malik, P. O’Brien, J. Raftery, Chem. Mater. 15 (2003) 4205.
[3] (a) C.M. Alvarez, B. Galan, M.E. Garcia, V. Riera, M.A. Ruiz, C. Bois, Organometallics 22 (2003) 3039;
(b) J. Perez, D. Morales, V. Riera, A. Rodriguez, S. Garcia-Granda, Dalton Trans. (2003) 1641;
(c) M.A. Alvarez, C. Alvarez, M.E. Garcia, V. Riera, M.A. Ruiz, C. Bois, Organometallics 16 (1997) 2581;
(d) X. Liu, V. Riera, M.A. Ruiz, M. Lanfranchi, A. Tiripicchio, M. Tiripicchio-Camellini, Organometallics 13 (1994) 1940;
(e) R.J. Haines, A. Pidcock, M. Safari, J. Chem. Soc., Dalton Trans. (1977) 830;
(f) A.L. Du Preez, I.L. Marais, R.J. Haines, A. Pidcock, M. Safari, J. Organomet. Chem. 141 (1977) C10.
[4] Y. Gimbert, F. Robert, A. Durif, M.-T. Averbuch, N. Kann, A.E. Greene, J. Org. Chem. 64 (1999) 3492.
[5] (a) F. Majoumo-Mbe, P. Loennecke, E.V. Novikova, G.P. Belov, E. Hey-Hawkins, Dalton Trans. (2005) 3326;
(b) N.A. Cooley, S.M. Green, D.F. Wass, K. Heslop, A.G. Orpen, P.G. Pringle, Organometallics 20 (2001) 4769.
[6] (a) T. Agapie, M.W. Day, L.M. Henling, J.A. Labinger, J.E. Bercaw, Organometallics 25 (2006) 2733;
(b) L.E. Bowen, D.F. Wass, Organometallics 25 (2006) 555;
(c) S.J. Schofer, M.W. Day, L.M. Henling, J.A. Labinger, J.E. Bercaw, Organometallics 25 (2006) 2743;
(d) K. Blann, A. Bollmann, J.T. Dixon, F.M. Hess, E. Killian, H. Maumela, D.H. Morgan, A. Neveling, S. Otto, M.J. Overett, Chem. Commun. (2005) 620;
(e) T. Agapie, S.J. Schofer, J.A. Labinger, J.E. Bercaw, J. Am. Chem. Soc. 126 (2004) 1304;
(f) A. Carter, S.A. Cohen, N.A. Cooley, A. Murphy, J. Scutt, D.F. Wass, Chem. Commun. (2002) 858.
[7] (a) A. Jabri, P. Crewdson, S. Gambarotta, I. Korobkov, R. Duchateau, Organometallics 25 (2006) 715;
(b) M.J. Overett, K. Blann, A. Bollmann, J.T. Dixon, F. Hess, E. Killian, H. Maumela, D.H. Morgan, A. Neveling, S. Otto, Chem. Commun. (2005) 622;
(c) M.J. Overett, K. Blann, A. Bollmann, J.T. Dixon, D. Haasbroek, E. Killian, H. Maumela, D.S. McGuinness, D.H. Morgan, J. Am. Chem. Soc. 127 (2005) 10723;
(d) A. Bollmann, K. Blann, J.T. Dixon, F.M. Hess, E. Killian, H. Maumela, D.S. McGuinness, D.H. Morgan, A. Neveling, S. Otto, M. Overett, A.M.Z. Slawin, P. Wasserscheid, S. Kuhlmann, J. Am. Chem. Soc. 126 (2004) 14712.
[8] G. Calabrò, D. Drommi, G. Bruno, F. Faraone, Dalton Trans. (2004) 81.
[9] (a) C. Ganesamoorthy, M.S. Balakrishna, P.P. George, J.T. Mague, Inorg. Chem. 46 (2007) 848;
(b) P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 45 (2006) 5893;
(c) P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 45 (2006) 6678;
(d) P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Organometallics 24 (2005) 3780;
(e) P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 44 (2005) 7925;
(f) M.S. Balakrishna, P.P. George, S.M. Mobin, Polyhedron 24 (2005) 475;
(g) S. Priya, M.S. Balakrishna, J.T. Mague, S.M. Mobin, Inorg. Chem. 42 (2003) 1272;
(h) M.S. Balakrishna, R. Panda, J.T. Mague, J. Chem. Soc., Dalton Trans. (2002) 4617;
(i) M.S. Balakrishna, R. Panda, J.T. Mague, Inorg. Chem. 40 (2001) 5620.
[10] (a) B. Punji, J.T. Mague, M.S. Balakrishna, Dalton Trans. (2006) 1322;
(b) B. Punji, C. Ganesamoorthy, M.S. Balakrishna, J. Mol. Catal. A: Chem. 259 (2006) 78;
(c) B. Punji, J.T. Mague, M.S. Balakrishna, J. Organomet. Chem. 691 (2006) 4265;
(d) B. Punji, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 45 (2006) 9454.
[11] (a) M.S. Balakrishna, S.S. Krishnamurthy, Inorg. Chim. Acta 230 (1995) 245;
(b) J. Ellermann, G. Szucsanyi, Z. Anorg. Allg. Chem. 520 (1985) 113.
[12] M. Cano, J.V. Heras, M.A. Lobo, E. Pinilla, M.A. Monge, Polyhedron 13 (1994) 1563.
[13] M.S. Balakrishna, B.D. Santarsiero, R.G. Cavell, Inorg. Chem. 33 (1994) 3079.
[14] M.S. Balakrishna, P.P. George, J.T. Mague, J. Organomet. Chem. 689 (2004) 3388.
[15] (a) V.V. Sushev, A.N. Kornev, Y.A. Kurskii, O.V. Kuznetsova, G.K. Fukin, Y.H. Budnikova, G.A. Abakumov, J. Organomet. Chem. 690 (2005) 1814;
(b) Z. Sun, F. Zhu, Q. Wu, S. Lin, Appl. Organomet. Chem. 20 (2006) 175.
[16] L.E. Anagho, J.F. Bickley, A. Steiner, L. Stahl, Angew. Chem., Int. Ed. 44 (2005) 3271.
[17] (a) S. Gauthier, L. Quebatte, R. Scopelliti, K. Severin, Chem. Eur. J. 10 (2004) 2811;
(b) M.P. de Araujo, E.M.A. Valle, J. Ellena, E.E. Castellano, E.N. dos Santos, A.A. Batista, Polyhedron 23 (2004) 3163;
(c) A.C. da Silva, H. Piotrowski, P. Mayer, K. Polborn, K. Severin, Eur. J. Inorg. Chem. (2001) 685.
[18] M.S. Balakrishna, S.S. Krishnamurthy, R. Murugavel, M. Nethaji, I.I. Mathews, J. Chem. Soc., Dalton Trans. (1993) 477.
[19] R.G. Holloway, B.R. Penfold, R. Colton, M.J. McCormick, J. Chem. Soc., Chem. Commun. (1976) 485.
[20] C.S. Browning, D.H. Farrar, D.C. Frankel, J.J. Vittal, Inorg. Chem. Acta 254 (1997) 329.
[21] W.L.F. Armarego, D.D. Perrin, Purification of Laboratory Chemicals, 4th ed., Butterworth-Heinemann, Linacre House, Jordan Hill, Oxford, UK, 1996.
[22] G. Giordano, R.H. Crabtree, Inorg. Synth. 28 (1990) 88.
[23] J.A. McCleverty, G. Wilkinson, Inorg. Synth. 28 (1990) 84.
[24] M.A. Bennett, T.N. Huang, T.W. Matheson, A.K. Smith, Inorg. Synth. 21 (1982) 74.
[25] T. Ukai, H. Kawazura, Y. Ishii, J.J. Bonnet, J.A. Ibers, J. Organomet. Chem. 65 (1974) 253.
[26] L.G.L. Ward, Inorg. Synth. 13 (1971) 54.
[27] Bruker-AXS, smart, Version 5.625, Madison, WI, 2000.
[28] Bruker-AXS, saint+, Version 6.35A, Madison, WI, 2002.
[29] G.M. Sheldrick, sadabs, Version 2.05, University of Göttingen, Germany, 2002.
[30] (a) Bruker-AXS, Shelxtl, Version 6.10, Madison, WI, 2000;
(b) G.M. Sheldrick, SHELXS97 and shelxL97, University of Göttingen, Germany, 1997.

[^0]: * Corresponding author. Tel.: +91 222576 7181; fax: +91 222576 7152/ 25723480.

 E-mail address: krishna@chem.iitb.ac.in (M.S. Balakrishna).

